使用JAX实现完整的Vision Transformer

时间:2023-02-06 12:46:29 来源:电竞网

本文将展示如何使用JAX/Flax实现Vision Transformer (ViT),以及如何使用JAX/Flax训练ViT。

Vision Transformer

在实现Vision Transformer时,首先要记住这张图。

以下是论文描述的ViT执行过程。

从输入图像中提取补丁图像,并将其转换为平面向量。

投影到 Transformer Encoder 来处理的维度

预先添加一个可学习的嵌入([class]标记),并添加一个位置嵌入。

由 Transformer Encoder 进行编码处理

使用[class]令牌作为输出,输入到MLP进行分类。

细节实现

下面,我们将使用JAX/Flax创建每个模块。

1、图像到展平的图像补丁

下面的代码从输入图像中提取图像补丁。这个过程通过卷积来实现,内核大小为patch_size * patch_size, stride为patch_size * patch_size,以避免重复。

class Patches(nn.Module):
 patch_size: int
 embed_dim: int

 def setup(self):
   self.conv = nn.Conv(
       features=self.embed_dim,
       kernel_size=(self.patch_size, self.patch_size),
       strides=(self.patch_size, self.patch_size),
       padding='VALID'
   )

 def __call__(self, images):
   patches = self.conv(images)
   b, h, w, c = patches.shape
   patches = jnp.reshape(patches, (b, h*w, c))
   return patches















2和3、对展平补丁块的线性投影/添加[CLS]标记/位置嵌入

Transformer Encoder 对所有层使用相同的尺寸大小hidden_dim。上面创建的补丁块向量被投影到hidden_dim维度向量上。与BERT一样,有一个CLS令牌被添加到序列的开头,还增加了一个可学习的位置嵌入来保存位置信息。

class PatchEncoder(nn.Module):
 hidden_dim: int

 @nn.compact
 def __call__(self, x):
   assert x.ndim == 3
   n, seq_len, _ = x.shape
   # Hidden dim
   x = nn.Dense(self.hidden_dim)(x)
   # Add cls token
   cls = self.param('cls_token', nn.initializers.zeros, (1, 1, self.hidden_dim))
   cls = jnp.tile(cls, (n, 1, 1))
   x = jnp.concatenate([cls, x], axis=1)
   # Add position embedding
   pos_embed = self.param(
       'position_embedding',
       nn.initializers.normal(stddev=0.02), # From BERT
       (1, seq_len + 1, self.hidden_dim)
   )
   return x + pos_embed


















4、Transformer encoder

如上图所示,编码器由多头自注意(MSA)和MLP交替层组成。Norm层 (LN)在MSA和MLP块之前,残差连接在块之后。

class TransformerEncoder(nn.Module):
 embed_dim: int
 hidden_dim: int
 n_heads: int
 drop_p: float
 mlp_dim: int

 def setup(self):
   self.mha = MultiHeadSelfAttention(self.hidden_dim, self.n_heads, self.drop_p)
   self.mlp = MLP(self.mlp_dim, self.drop_p)
   self.layer_norm = nn.LayerNorm(epsilon=1e-6)
 
 def __call__(self, inputs, train=True):
   # Attention Block
   x = self.layer_norm(inputs)
   x = self.mha(x, train)
   x = inputs + x
   # MLP block
   y = self.layer_norm(x)
   y = self.mlp(y, train)

   return x + y




















MLP是一个两层网络。激活函数是GELU。本文将Dropout应用于Dense层之后。

class MLP(nn.Module):
 mlp_dim: int
 drop_p: float
 out_dim: Optional[int] =

 @nn.compact
 def __call__(self, inputs, train=True):
   actual_out_dim = inputs.shape[-1] if self.out_dim is else self.out_dim
   x = nn.Dense(features=self.mlp_dim)(inputs)
   x = nn.gelu(x)
   x = nn.Dropout(rate=self.drop_p, deterministic=not train)(x)
   x = nn.Dense(features=actual_out_dim)(x)
   x = nn.Dropout(rate=self.drop_p, deterministic=not train)(x)
   return x












多头自注意(MSA)

qkv的形式应为[B, N, T, D],如Single Head中计算权重和注意力后,应输出回原维度[B, T, C=N*D]。

class MultiHeadSelfAttention(nn.Module):
 hidden_dim: int
 n_heads: int
 drop_p: float

 def setup(self):
   self.q_net = nn.Dense(self.hidden_dim)
   self.k_net = nn.Dense(self.hidden_dim)
   self.v_net = nn.Dense(self.hidden_dim)

   self.proj_net = nn.Dense(self.hidden_dim)

   self.att_drop = nn.Dropout(self.drop_p)
   self.proj_drop = nn.Dropout(self.drop_p)

 def __call__(self, x, train=True):
   B, T, C = x.shape # batch_size, seq_length, hidden_dim
   N, D = self.n_heads, C // self.n_heads # num_heads, head_dim
   q = self.q_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3) # (B, N, T, D)
   k = self.k_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3)
   v = self.v_net(x).reshape(B, T, N, D).transpose(0, 2, 1, 3)

   # weights (B, N, T, T)
   weights = jnp.matmul(q, jnp.swapaxes(k, -2, -1)) / math.sqrt(D)
   normalized_weights = nn.softmax(weights, axis=-1)

   # attention (B, N, T, D)
   attention = jnp.matmul(normalized_weights, v)
   attention = self.att_drop(attention, deterministic=not train)

   # gather heads
   attention = attention.transpose(0, 2, 1, 3).reshape(B, T, N*D)

   # project
   out = self.proj_drop(self.proj_net(attention), deterministic=not train)

   return out



































5、使用CLS嵌入进行分类

最后MLP头(分类头)。

class ViT(nn.Module):
 patch_size: int
 embed_dim: int
 hidden_dim: int
 n_heads: int
 drop_p: float
 num_layers: int
 mlp_dim: int
 num_classes: int

 def setup(self):
   self.patch_extracter = Patches(self.patch_size, self.embed_dim)
   self.patch_encoder = PatchEncoder(self.hidden_dim)
   self.dropout = nn.Dropout(self.drop_p)
   self.transformer_encoder = TransformerEncoder(self.embed_dim, self.hidden_dim, self.n_heads, self.drop_p, self.mlp_dim)
   self.cls_head = nn.Dense(features=self.num_classes)

 def __call__(self, x, train=True):
   x = self.patch_extracter(x)
   x = self.patch_encoder(x)
   x = self.dropout(x, deterministic=not train)
   for i in range(self.num_layers):
     x = self.transformer_encoder(x, train)
   # MLP head
   x = x[:, 0] # [CLS] token
   x = self.cls_head(x)
   return x

























使用JAX/Flax训练

现在已经创建了模型,下面就是使用JAX/Flax来训练。

数据集

这里我们直接使用 torchvision的CIFAR10.

首先是一些工具函数

def image_to_numpy(img):
 img = np.array(img, dtype=np.float32)
 img = (img / 255. - DATA_MEANS) / DATA_STD
 return img

def numpy_collate(batch):
 if isinstance(batch[0], np.ndarray):
   return np.stack(batch)
 elif isinstance(batch[0], (tuple, list)):
   transposed = zip(*batch)
   return [numpy_collate(samples) for samples in transposed]
 else:
   return np.array(batch)











然后是训练和测试的dataloader

test_transform = image_to_numpy
train_transform = transforms.Compose([
   transforms.RandomHorizontalFlip(),
   transforms.RandomResizedCrop((IMAGE_SIZE, IMAGE_SIZE), scale=CROP_SCALES, ratio=CROP_RATIO),
   image_to_numpy
])

# Validation set should not use the augmentation.
train_dataset = CIFAR10('data', train=True, transform=train_transform, download=True)
val_dataset = CIFAR10('data', train=True, transform=test_transform, download=True)
train_set, _ = torch.utils.data.random_split(train_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED))
_, val_set = torch.utils.data.random_split(val_dataset, [45000, 5000], generator=torch.Generator().manual_seed(SEED))
test_set = CIFAR10('data', train=False, transform=test_transform, download=True)

train_loader = torch.utils.data.DataLoader(
   train_set, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
)
val_loader = torch.utils.data.DataLoader(
   val_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
)
test_loader = torch.utils.data.DataLoader(
   test_set, batch_size=BATCH_SIZE, shuffle=False, drop_last=False, num_workers=2, persistent_workers=True, collate_fn=numpy_collate,
)





















初始化模型

初始化ViT模型

def initialize_model(
   seed=42,
   patch_size=16, embed_dim=192, hidden_dim=192,
   n_heads=3, drop_p=0.1, num_layers=12, mlp_dim=768, num_classes=10
):
 main_rng = jax.random.PRNGKey(seed)
 x = jnp.ones(shape=(5, 32. 32. 3))
 # ViT
 model = ViT(
     patch_size=patch_size,
     embed_dim=embed_dim,
     hidden_dim=hidden_dim,
     n_heads=n_heads,
     drop_p=drop_p,
     num_layers=num_layers,
     mlp_dim=mlp_dim,
     num_classes=num_classes
 )
 main_rng, init_rng, drop_rng = random.split(main_rng, 3)
 params = model.init({'params': init_rng, 'dropout': drop_rng}, x, train=True)['params']
 return model, params, main_rng

vit_model, vit_params, vit_rng = initialize_model()





















创建TrainState

在Flax中常见的模式是创建管理训练的状态的类,包括轮次、优化器状态和模型参数等等。还可以通过在apply_fn中指定apply_fn来减少学习循环中的函数参数列表,apply_fn对应于模型的前向传播。

def create_train_state(
   model, params, learning_rate
):
 optimizer = optax.adam(learning_rate)
 return train_state.TrainState.create(
     apply_fn=model.apply,
     tx=optimizer,
     params=params
 )
 
 state = create_train_state(vit_model, vit_params, 3e-4)









循环训练

def train_model(train_loader, val_loader, state. rng, num_epochs=100):
 best_eval = 0.0
 for epoch_idx in tqdm(range(1, num_epochs + 1)):
   state. rng = train_epoch(train_loader, epoch_idx, state. rng)
   if epoch_idx % 1 == 0:
     eval_acc = eval_model(val_loader, state. rng)
     logger.add_scalar('val/acc', eval_acc, global_step=epoch_idx)
     if eval_acc >= best_eval:
       best_eval = eval_acc
       save_model(state. step=epoch_idx)
     logger.flush()
 # Evaluate after training
 test_acc = eval_model(test_loader, state. rng)
 print(f'test_acc: {test_acc}')
 
def train_epoch(train_loader, epoch_idx, state. rng):
 metrics = defaultdict(list)
 for batch in tqdm(train_loader, desc='Training', leave=False):
   state. rng, loss, acc = train_step(state. rng, batch)
   metrics['loss'].append(loss)
   metrics['acc'].append(acc)
 for key in metrics.keys():
   arg_val = np.stack(jax.device_get(metrics[key])).mean()
   logger.add_scalar('train/' + key, arg_val. global_step=epoch_idx)
   print(f'[epoch {epoch_idx}] {key}: {arg_val}')
 return state. rng
























验证

def eval_model(data_loader, state. rng):
 # Test model on all images of a data loader and return avg loss
 correct_class, count = 0, 0
 for batch in data_loader:
   rng, acc = eval_step(state. rng, batch)
   correct_class += acc * batch[0].shape[0]
   count += batch[0].shape[0]
 eval_acc = (correct_class / count).item()
 return eval_acc







训练步骤

在train_step中定义损失函数,计算模型参数的梯度,并根据梯度更新参数;在value_and_gradients方法中,计算状态的梯度。在apply_gradients中,更新TrainState。交叉熵损失是通过apply_fn(与model.apply相同)计算logits来计算的,apply_fn是在创建TrainState时指定的。

@jax.jit
def train_step(state. rng, batch):
 loss_fn = lambda params: calculate_loss(params, state. rng, batch, train=True)
 # Get loss, gradients for loss, and other outputs of loss function
 (loss, (acc, rng)), grads = jax.value_and_grad(loss_fn, has_aux=True)(state.params)
 # Update parameters and batch statistics
 state = state.apply_gradients(grads=grads)
 return state. rng, loss, acc






计算损失

def calculate_loss(params, state. rng, batch, train):
 imgs, labels = batch
 rng, drop_rng = random.split(rng)
 logits = state.apply_fn({'params': params}, imgs, train=train, rngs={'dropout': drop_rng})
 loss = optax.softmax_cross_entropy_with_integer_labels(logits=logits, labels=labels).mean()
 acc = (logits.argmax(axis=-1) == labels).mean()
 return loss, (acc, rng)





结果

训练结果如下所示。在Colab pro的标准GPU上,训练时间约为1.5小时。

test_acc: 0.7704000473022461

如果你对JAX感兴趣,请看这里是本文的完整代码:

https://avoid.overfit.cn/post/926b7965ba56464ba151cbbfb6a98a93

作者:satojkovic

1/1页